Research
1, Packaged foods and beverages representation that leveraged pre-trained model in Natural Language Processing (NLP)
[1] Hu, G., Ahmed, M., & L’Abbé, M. (2023). Natural language processing and machine learning approaches for food categorization and nutrition quality prediction compared to traditional methods. The American Journal of Clinical Nutrition, 117(3), 449-450. (Editor’s Choice)
https://doi.org/10.1016/j.ajcnut.2022.11.022
[2] Hu, G., Flexner, N., Tiscornia, M., & L’Abbé, M. (2023). Accelerating NOVA classification of food processing using a fine-tuned language model: a multi-country study. Nutrients, 15, 1-12. (Accepted and In Press, Special Issue: AI in Public Health Nutrition)
2, Pathomics, metabolomics and lipidomics (Well-nourished vs Malnourished induced liver metabolic dysfunction)
[1] Hu, G., Ling, C., Chi, L., Thind, M. K., Furse, S., … & Bandsma, R. (2022). The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction. Nature Communications, 13(1), 1-16.
https://doi.org/10.1038/s41467-022-35317-y
[2] Arvidsson, M.E., Hu, G., Chi, L., Bourdon, C., Ling, C., ChenMi, Y., … & Bandsma, R. (2022). Inhibition of mTOR improves malnutrition induced hepatic metabolic dysfunction. Scientific Reports, 12(1), 1-12. https://doi.org/10.1038/s41598-022-24428-7
[3] Chi, L., Lee, D., Leung, S., Hu, G., Wen, B., … & Bandsma, R. (2023). Loss of functional peroxisomes leads to increased mitochondrial biogenesis and reduced autophagy that preserve mitochondrial function. Cellular and Molecular Life Sciences, 80(7), 1-20. https://doi.org/10.1007/s00018-023-04827-3
[4] Ling, C., Versloot, C., Arvidsson, M.E., Hu, G., Swain, N., … & Bandsma, R. (2023). Rebalancing of mitochondrial homeostasis through an NAD+-SIRT1 pathway preserves intestinal barrier function in severe malnutrition. EBioMedicine, 96, 1-21. https://doi.org/10.1016/j.ebiom.2023.104809
3, Food Processing
[1] Hu, G., Zheng, Y., Liu, Z., Deng, Y., & Zhao, Y. (2016). Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chemistry, 204, 46-55.
[2] Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860-1866.